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Con i

The bounds of Soms (1977) for the tail area of the t-distribution with
integral degrees of freedom are extended to arbitrary positive degrees of

‘ . freedom. Three numerical examples are provided.
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SIGNIFICANCE AND EXPLANATION
\
\\:;—Real degrees of freedom arise in the modification of the two-sample

t-test when the variances cannot be assumed to be equal. For small degrees

of freedom both linear interpolation and standard computer routines may be
unsatisfactory. The present paper provides a simple technique for satis-

factory estimates of tail probabilities. ﬁi;;\

The responsibilitv for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A NOTE ON AN EXTENSION OF RATIONAL BOUNDS FOR
THE t-TAIL AREA TO ARBITRARY DEGREES OF FREEDOM

Andrew P, Soms

1. Introduction and Statement of Extension

In appl‘cations, such as the Welch modification of the two-
sample t-test when variances cannot be assumed to be equal, it 1is
sometimes desired to evaluate the t-tail area for nonintegral
degrees of freedom. It is therefore of practical interest to
extend the results of Soms (1977) to arbitrary real degrees of
freedom. While one could use the relationship between the t and
beta distributions indicated in Section 3, this would consume

substantially more computer time because of the numerical inte-

gration and would introduce errors 1f either limit of integration
was close to 0 or 1. We introduce notation and state the result

in this Section, indicate the proofs in 2, and give some numerical ;f
examples in 3.

For arbitrary real k>0, let

F((k+1)/2)

2, . =(k+1)/2
£ (t) = ¢, (1+t°/k) . = ,
k k ko rek/2) (k) E
Fk(x) = 1-F, (x) = Ixfk(t)dt .
and R_ = Fk(x)/[(l+x2/k)fk(x)l ) |
Also, for k>2, let Y = kcil(l-éci) and v in ™ ———K-——E -1,
max min 2(k+2)ck

and for k<2, interchange the definitions of Ymax and Ymin' Then

wve have the following extension of Theorems 2.1 and 2.2 of ‘
Soms (1977). ;

1+y

Theorem 1.1: Let p(x,Y) = 3 3 5
(x"+be, (1+7)7)

. Then
k+yx
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PUx, Y ) < Ry < p(XY,.) (1.1)

or, equivalently,
" 2 J

x* = x_
(1-+E—)fk(x)p(x,Ymin) < Fk(x) < (1+k )fk(x)p(x,Ymax). (1.2)
This is a generalization of Soms (1977) where (1.1), or equivalently
{1.2), was shown to hold for integral k. It was also shown there

that if k=2, and Rx = p(x,Yz), and hence this

Ymax = Ymin = Y2

case need not be considered further.

2. An Outline of the Proofs

We first note that the asymptotic expansion given in Soms
{1976) for the tail area of the t-distribution is valid for arbi-
trary k>0 even though it was stated for k a positive integer,
because this fact was not used in the derivation. Hence the
heuristic derivation of (l1.1) remains exactly as before. To
insure that the proof of Theorem 1.1 given for the integ?al case
works for k real, all that needs to be verified is that the ck ?
satisfy the lemmas in the Appendix and the relationships cf

Theorems 2.1 and 2.2 of Soms (1977). We state these lemmas and

relationships and indicate their proofs.

Lemma 2.1: For real k>0, the Sk form an increasing sequenca with
L

iimit 1/(2w)°.

oof: That the limit is 1/(2w)% is shown by using Stirling's

|9

formula. To obtain the result it suffices to show that
d n ¢

— kK . g(k) > 0 for all k>0. By differentiation,

-l oypckily _1oycky L
g(k) ~ 7 v - ¥ - L,

where Y(x) 1s the digamma function (see, e.g., Abramowitz and

Stegun, 1965, p. 258). From Artin (1964, p. 17),




0 -
‘ ’ 1 k+1 I oy ky o 1
| 3 h(k) = Y5 - 3 ¥(3) 120 (k+21) (k+21+1) °
L -l
; Let f(x) = ((k+2x)(k+2x+1)) ~. Then it can be shown by differen-
tiation that f is convex ané by considering the area under f(x)
5 s | from 0 to n and letting n-+« it follows that
o .
: f f(x)dx + 3 £(0) < h(k) ,
: 0
§ or
? 1 x+1 |, 1 1 )
f 7 4 Tt S T SRR
1 1 k+2¢t
since [ (k=20 (he2ee D) dt = 7 in T+2csl’ The above 1s a special

case of the Euler-Maclaurin summation formula and was shown to

the author by Harris (1978). Therefore it suffices to show that

k+1 1 1
b -t oD Tk
k+1 1
or, since n —E—-ln(k+1) - tn k > a1’ that

1, 1
k+1 k(k+1)

1
2%

which is true for all k>0, concluding the proof.

Lemma 2.2: For k>0, 1-4c§ > 0.

Proof: Follows from Lemma 2.1.

Lemma 2.3: For k>2, 8c2 ~1 > 0 and for k<2, 8ci-1 < 0.

k
Proof: Follows from Lemma 2.]1] and the observation that 8c§ -1 = 0.
Lemma 2.4: For k>2, el < k/(6k+4) and for k<2, ERUOIIR
Proof: Let h(k) = Sln(k/6k+lo))!2 - in Cr Then 1lim h(k) = 0,
k=0

h(2) = 0 and {t must be shown that h(k) < 0, 0 <k <2 and h(k) >0,
k>2, By differentiation and the recursion formula for the ¥
function (see, e.g. Abramowitz and Stegun, p. 258),

¥(x+1) = ¥(x) + 1/x,




-

Lemma 2.6: For k>2, 16ke’ + (4k+4)c: > k and for k<2, 16kec

Proof: By some algebra, Lemma 2.6 is equivalent to

k41 1 L., k4l k
LN R T U I B At IR A

By differentiation, it follows that for k < (2%-1)/3 = .138,

3k+1
- ] d f k > .138
£(k) T(3k+2) (k¥1) 12 an increasing function and for k 2

decreasing. Also, from Artin (1964, p. 17) 1t follows that ’

g(k) = % (‘P(E%l + 1) - V(% 4+ 1)) is both a positive and decreas-

ing function of k. Hence, for k such that kl'fk.skR.5.138,

B (k) < £Qkp) - glkgp) (2.1)
and for k such that .138§kL§k§kR,
h' (k) > £Qkp) - g(k;) . (2.2)

Also, since o and dk = (k/(6k+4))li are both increasing functions

of k, for k such that kakfkR,

dp =€y S d - e S d I (2.3) ;

Using (2.1), (2.2), and (2.3), it follows that h'(k) < O,
.0-.1(.05), h(k) < 0, .1-.3(.01), .3-1.1(.05), and h'(k) > O,
1.1-14.2(.1). From Lemma 2.1, h(k) > 0 1f (k/(6k+4))* > (1/27)™%
or k > 14.2. Combining the above results gives the conclusion.

To complete the extension it is necessary to prove the three

following lemmas used in Soms (1977).

Lemma 2.5: For k>2, ci < k/(4k+8), and for k<2, ci > k/(4k+8),

Proof: For k>2, k/(4k+8) > k/(6k+4) and for k<2, k/(4k+8) <

k/(6k+4), and so using Lemma 2.4, the result follows.

4 4
k x *

(4k+4)c§ < k.
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2 % -1
Ci 2 {2(k:1)((1‘*(%§f) ) + 11] for k 2 2. By using the recur-

sion formula for the T function this is further equivalent to

) I.Z(k-i-l +1)

. Y% -1 N
hy(k) = &5 ;_(-:TT)TT— ¢ hy(k) = [(1+(k+1) ) +1] for k 2z 2.
2

Let g(k) = %n h_.(k) -&n h,(k). Then 1lim g(k) = g(2) = 0 and we
1 2 k>0
must show that g(k) <0, 0<k<2, and g(k) >0, k>2, By differen-

tiation,

1 k+1 bk
g' (k) = ~ == + [c——+1)-wo-+1ﬂ + —2E  x
K+1 PRTE

2.k 2k, 2. -1
[(1+(k+1) ) [(l*’(m) ) +1
e s g, (k) + g,(k) .
k+1l 1 2 1
1 .
Now g' (k) < = 1 + gl(k) + 2k and for k such that kl.sk'<k |
1 )
g' (k) < =~ E;:T + gl(kL) + 2kR. Also, since for k > 1, gz(k) is a 3
1
\J
decreasing function of k, we have g (k) > - kL+l + gl(kR)-+gz(kR)

for 1<k, ¢k <k . Hence g' (k) <0, .0-.15(.01), g(k) <0,
.15-.25(.001) and .25-1.60(.01), g'(k) >0, 1.-3.4(.1), g(k) >0,

3.4-5.0(.01) and 5.0-17(.1) and since 16k cﬁ

4 2 _ 4 2 4 2
K T 4k e = k(16ck-+4ck) and 16c17 + hcl7 > 1, g(k) > 0,

k > 17. Coumbining the above yields the result.

. 2 (k) (k+4) 2 (k) (k+4)
Lemma 2.7: For k>2, ¢ > B (k+1) (k+2) k ° 8 (k+1) (k+2)

Proof: By using the recursion formula for the I function, it {is

+ (hk+a)el >

16k ¢

and for k<2, c

equivalent to show

i r (k+1 ,1)

- -t o Lktl) (ktd) >
hy (k) TE e < by (k) = gD . k22,

Let g(k) = Zn hl(k) - fn h,(k). Then lim g(k) = 0 and g(2) = 0, g
N k=0 i




Liny - G+ 1) 4 E%? -

By differentiation, g' (k) = W(E%

gl(k) - gz(k). Since 8 and g, are decreasing functions of k and

R+l kb

L -
a(k) = (k) (k+4)/(8(k+1;(k+2)) is increasing feor k < (12)  +2 = 5.46

we have for k such that kT <k <« kR,

2
c

2
x a(k) < L a(kL), k, < 5.46

R

R
and (2.4)

) - X vy : ! -
gy (k) By (k) g’ (%) < & (k) g, (k).

Using (2.4), we have g'(k) < 0, .0-.45(.05), g(k) < 0, .45-1.15(.01),

g'(k) > 0, 1.15-9.05(.01) and g(k) > 0 for k > 9 since

2 (k) (k+4) 2 L+ 4 ) . -
ck > B (k+1) (k+2) if Cy > §TEI§7 and the latter is true for k 9.

Combining the above concludes the proof.

All the calculations involved in the proofs were done on a

computer using I' and ¥ routines.

3. Some Numerical Examples

Suppose k= ,2 and x=4. Then using Theorem 1.1, we find that

L}
.
t9

= = ¢
c o, .19748, Ynax .16557, p\d,Ymax)

p(byy_, ) = .24857 and .28468 < F 2(4) < .28471. The value siven

4859, = .18482,

by a <omputer routine using the relaticmnship )y = .5 4

51, (1/2,k/2), x = t7/k/(1+c°/K), ds 28471, If k = 2.5 anc v .,
= 3 = ] 7 AN = 45704

tten €y s .361809, Ymax 1.099178, p(...,{max) L445704

= = 197 86! F MY ot
Y min 1.121967, p(Z,Ymin) .445287 and .07868 < }7.5(L)
The computer value is .07870. Finally, if k= .1, x =25, theu
' = =, 42 25,1 = o7 = SO 6
¢ 1 .14809, Ypax 085642, p( ’{max) 039997, Ymin 00616, . |
P(25,y_, ) = .039997 and .30251 < F 1(25) < .30251. The computer

value {5 .30251. Th- above statements of course reflect rounding.
These numerical examples Indicate that Theorerm 1.1 wveulld *e

well suited to a small sample Monte Carlce studw of the Welch t-test.
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